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Long-Horizon Associative Learning Explains Human
Sensitivity to Statistical and Network Structures in
Auditory Sequences
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Networks are a useful mathematical tool for capturing the complexity of the world. In a previous behavioral study, we showed that
human adults were sensitive to the high-level network structure underlying auditory sequences, even when presented with incom-
plete information. Their performance was best explained by a mathematical model compatible with associative learning principles,
based on the integration of the transition probabilities between adjacent and nonadjacent elements with a memory decay. In the
present study, we explored the neural correlates of this hypothesis via magnetoencephalography (MEG). Participants (N =23, 16
females) passively listened to sequences of tones organized in a sparse community network structure comprising two communities.
An early difference (~150 ms) was observed in the brain responses to tone transitions with similar transition probability but occur-
ring either within or between communities. This result implies a rapid and automatic encoding of the sequence structure. Using
time-resolved decoding, we estimated the duration and overlap of the representation of each tone. The decoding performance exhib-
ited exponential decay, resulting in a significant overlap between the representations of successive tones. Based on this extended
decay profile, we estimated a long-horizon associative learning novelty index for each transition and found a correlation of this
measure with the MEG signal. Overall, our study sheds light on the neural mechanisms underlying human sensitivity to network
structures and highlights the potential role of Hebbian-like mechanisms in supporting learning at various temporal scales.
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Significance Statement

We conducted a MEG study in which human adults were passively exposed to sequences of tones organized in a sparse com-
munity network structure. Despite the uniform transition probabilities between tones, participants' brain activity exhibited
sensitivity to the network structure. Notably, a consistent “deviant” response was observed at ~150 ms when the sequence
switched between communities. A long-tail exponential decay in tone representation allowed overlapping representations
of successive sequence elements, facilitating long-range associative mechanisms. This binding mechanism adequately
accounted for various scales of sequence learning, bridging the gap between statistical and network learning approaches. )

-

Introduction detect first-order relationships between successive events (i.e.,
transition probabilities) and its limits have been extensively stud-
ied in humans at the behavioral and neural levels (Saffran et al.,
1996; Maheu et al,, 2019; Benjamin et al., 2021, 2023b, 2024;
Henin et al., 2021; Flo et al., 2022) as well as in nonhumans ani-
mals (Toro and Trobaldén, 2005; James et al., 2020; Boros et al.,
2021). Higher-order statistical relations between elements of a

Understanding the structure of the input sequences we encounter
is fundamental for developing a comprehensive mental model of
our environment (Dehaene et al., 2015, 2022). The capacity to
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can adequately explain both first-order (local transitions) and
network structure learning and whether these computations
require distinct cognitive and brain processes.

To bridge the gap between local statistical and network-level
learning studies, we previously proposed the sparse community
paradigm, which allows to simultaneously characterize these
aspects on auditory sequences (Benjamin et al, 2023a).
Building upon the community paradigm introduced by
Schapiro et al. (2013), we created a network consisting of two
densely but incompletely connected clusters (called communi-
ties) of six elements each. Each element is connected with four
other elements, and the two clusters are linked by only two edges
(links). A learning sequence is created by randomly drawing the
next tone from the four possibilities, creating a random walk in
the network with a uniform transition probability (TP) between
successive tones (Movie 1A). After exposure to such a sequence,
participants were asked to judge their familiarity with various
pairs of tones that (1) had or had not been presented during
learning to test local TP learning and (2) did or did not belong
to the same community to test learning of the higher-level struc-
ture (Benjamin et al., 2023a). Interestingly, participants judged
new transitions they had never heard as highly familiar if they
were between tones belonging to the same community. This
completion effect demonstrated that they generalized the com-
munity structure to missing transitions. Conversely, they judged
transitions between communities to be less familiar than within
communities despite the absence of any difference in local TP
during learning. This pruning effect translates into a decrease
in subjective familiarity with tone pairs that switch from one
community to the other despite similar transition probabilities
between tones. Among the various models proposed in the statis-
tical and network learning literature, an associative learning
approach (the free energy minimization model —FEMM; Lynn
et al., 2020), conceptually related to the successor representation,
provided the best fit to participants' behavior. According to this
model, participants did not solely compute adjacent transition
probabilities but a linear sum of transition probabilities at all
orders (adjacent, first-order nonadjacent, second-order nonadja-
cent, and so on), weighted by a decreasing exponential factor.
This model explains how both local transitions and network
structures are perceived and successfully accounts for behavioral
results across different network types, including community,
sparse community, ring, and lattice networks (Lynn et al,
2020; Benjamin et al., 2023a), as well as results concerning local
statistical learning. FEMM appears to be a good candidate for a
unifying framework of sequence learning.

However, a common model is insufficient to postulate a com-
mon implementation (Marr, 1982), and there is still no consen-
sus on how the brain implements these computations. On the
one hand, sensitivity to network structure is often described as
a conscious abstraction of the structure involving top-down
attention processes with late brain signatures (Ren et al., 2022)
typically in the prefrontal cortex (Stiso et al., 2022). On the other
hand, we previously postulated that low-level associative learning
(Benjamin et al., 2023a; see also Endress, 2010; Schapiro et al.,
2017; Endress and Johnson, 2021) was sufficient for both local
and higher-order learning. To disentangle those two hypotheses,
we tested here whether passive exposure to a rapid auditory
sequence could lead to successful learning of its network struc-
ture. We thus exposed participants to fast sequence of tones
following the sparse community design while recording their
brain activity with MEG.
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Materials and Methods

Stimuli and procedure

We generated 12 tones of 50 ms duration, logarithmically distributed
from 300 to 1,800 Hz. For each participant, the 12 tones were randomly
assigned to the 12 nodes of the sparse community network (see Movie 1
for a complete description of the network structure). The sparse commu-
nity network comprised two communities (i.e., clusters) made of six
nodes, densely connected to each other but poorly connected to the
nodes of the other community. Crucially, in the sparse community
design, some connections between nodes belonging to the same commu-
nity are missing. Specifically, for each participant, we randomly removed
12 transitions (six per community, one per node). After a training block
with this incomplete graph, new transitions were added at a low fre-
quency (4%) for the following test blocks. We refer to these transitions
as New and those presented during training as Familiar. The New tran-
sitions were critically within and between the communities (which we
refer to as Within vs Between). New Within corresponds to the 12 “miss-
ing” transitions randomly removed from the network in the training
block. To balance, we randomly selected 12 New Between transitions
(one per node) that violated the community clustering property. As a
result, the transition probabilities between tones during the training
block were flat: TP = 25%, while during the test blocks, the Familiar tran-
sitions had TP =23% and a frequency of 18.4/block. The 12 New Within
and 12 New Between community transitions had TP =4% and a fre-
quency of 3.2/block. The New Within and New Between transitions
were randomly drawn for each subject to add variability to the network
structure. Movie 1A shows an example of one structure and the associ-
ated sequence used for one participant.

We then performed random walks in the participant's sparse
community graph to derive one 960-item-long training sequence and
six 960-item-long test sequences (one sequence corresponds to one block)
with 200 ms interstimulus interval (ISI) between each tone (Movie 1A).
The first block of 960 items comprised only Familiar Within and
Familiar Between transitions (training block, TP =25% each). For the
next six blocks (Tests 1-6), we introduced infrequent New Within and
New Between transitions (TP =4% each). All Familiar transitions, inde-
pendently of whether they were Within or Between communities, had
the same TPs and appeared with the same frequency (TP =23% each).
However, the graph structure entails that the participants heard in total
fewer between community transitions than within community transitions
(there are 32 Familiar Within and 4 Familiar Between community tran-
sitions during training, completed by 12 New Within and 12 New
Between community transitions during test).

Crucially, the experiment was completely passive, and participants
were unaware of the structure of the auditory sequence. They were
only instructed to pay attention to the sequence of tones and to stay still
while looking at a fixation cross displayed at the center of the screen to
avoid noise from eye movements. The experiment lasted ~45 min, and
a small break inside the MEG was possible between each block.

Participants

Twenty-nine healthy adults came to the lab and 23 recordings (16
females; mean age, 26.58; SD =6.1) were kept for the analyses (4 subjects
were rejected due to MEG malfunction, 1 due to experimenter error dur-
ing recording, and 1 scan was aborted due to subject agitation). All par-
ticipants gave written informed consent prior to enrollment and received
90€ as compensation. This experiment was approved by the national eth-
ical committee (CPP Ile-de-France III).

MEG recordings and preprocessing

Participants performed the tasks while sitting inside an electromagneti-
cally shielded room. The magnetic component of their brain activity was
recorded with a 306-channel, whole-head MEG by Elekta Neuromag.
The MEG helmet is composed of 102 triplets, each comprising one mag-
netometer and two orthogonal planar gradiometers. Brain signal was
acquired at a sampling rate of 1,000 Hz with a hardware high-pass
filter at 0.03 Hz. The data were then resampled at 250 Hz to reduce com-
putational load. Eye movements were monitored with vertical and
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Movie 1.

Design and procedure. A, Example of a sparse community network for one participant. All community networks are similar in terms of properties, but New Within and New Between

transitions are randomly drawn for each participant. Purple lines correspond to Familiar Within community transitions, red lines to Familiar Between community transitions, and blue and pink
lines correspond, respectively, to New Within and New Between transitions. We can derive a sequence by performing a random walk into this network (click to see video of the design). Here we
display an example of a test sequence derived from this structure. B, Experimental procedure. First, participants passively listened to a sequence from a sparse community network, in which each
TP between tones was 25% (Training). Then they were presented with six 960-item test blocks obtained from the community structure graph comprising New Within and Between community
transitions with low transition probabilities of 4% (light blue and pink colors on the graph). €, Table summarizing the local and community properties for the transitions for each condition. Each
single Familiar transition is, on average, presented 18.4 times/block (20 in the Training sequence) and, therefore, has a probability of 23% to be observed (25% in the training sequence)
irrespectively of staying within or switching between communities. New transitions (Within community and Between communities) have a probability of 4% in the test blocks, which implies

that each single New Transition is heard 3.2 times/block on average. [View online]

horizontal EOGs and heartbeats with ECGs. Subjects' head position
inside the helmet was measured for realignment at the beginning of
each run with an isotrack Polhemus system from the location of four
coils placed over the frontal and mastoids.

MEG signal was then preprocessed using MNE-Python pipeline with
classical steps following recommendations from Jas et al. (2018) and Niso
et al. (2018). We first applied Maxfilter algorithm to remove ambient
noise, and signal was bandpass filtered ([0.1-30] Hz). Eye movements
and heartbeats were identified and removed using PCA components’
correlation with EOG and ECG measures.

To decode if a transition was within or between community, data was
epoched from 100 ms before to 300 ms after tone onset. To determine
how sustained was the neural representation of each tone across time,
we segmented the data in 2.6 s long epochs, from 100 ms before to
2,500 ms after tone onset. Bad data, channels, and epochs were detected
and removed with autoreject toolbox (Jas et al., 2017).

Within versus Between decoding analysis

To examine whether the brain encoded the community structure, we
trained a logistic regression decoder to predict whether the transition
that just occurred stayed Within a community (Familiar Within and
New Within) or switched Between communities (Familiar Between
and New Between). The decoder was trained on the short epochs
([-0.1, 0.3]) slightly smoothed using a sliding window (+20 ms) to
enhance the signal-to-noise ratio. We used threefold cross-validation
process: the decoder was trained on two-thirds of the data and tested
on the remaining third of the trials. The procedure was repeated three
times, corresponding to the three cross-validation folds. Each transition

had the same frequency, but Within transitions were more numerous
than Between transitions, resulting in a larger total number of epochs
for Within condition. We thus used the area under the ROC curve as a
metric of success (ROC AUC) since it is not sensitive to such imbalance.
This analysis was conducted for each time point of the epochs (Fig. 1).
We also computed the decoding performance when the decoder was
trained at time ¢ and tested at time £, to reveal the generalization across
time (GAT) of the decoder, and thus the stability of the mental represen-
tation (Fig. 1). By design, the diagonal of the GAT matrix corresponds to
the previously described time-by-time decoding performance.

To assess robustness, we replicated the decoding accuracy with a
different metric, and we performed a decoding analysis on the whole
epoch at the subject level for training and testing. This decoder simulta-
neously used all time points across all recording channels, providing a
single accuracy value for the entire epoch. Unlike time-by-time decoding,
this approach can exploit the temporal dynamic of the signal to differ-
entiate conditions.

For the previous analysis, we pulled together the data from Familiar
and New transitions. In a further analysis, we investigated whether the
success of decoding the community remained possible when analyzing
Familiar and New transitions separately. Therefore, we replicated the
previous decoding analysis but limited it to Familiar transitions only,
which had identical high local transition probabilities of 23% (Familiar
Within vs Familiar Between) or to New transitions only (New Within
vs New Between), which had a low TP of 4%. Note, however, that in
this last case, the number of epochs was small, resulting in a low
signal-to-noise ratio.
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Statistical analysis. Statistical significance in the GAT matrix was
assessed using a temporal-temporal cluster-based permutation (MNE-
Python; Gramfort et al., 2013) for times between 0 and 300 ms. For
the time-by-time decoder, we performed a temporal cluster permutation
test in [0, 300] ms time window. Note that these two statistical tests are
not independent as the time-by-time decoding corresponds to the diag-
onal of the GAT matrix. The whole epoch decoding gives a single decod-
ing value per subject, we thus performed a one-way ¢ test across subjects
to test whether the decoding performance was significantly above chance.

Long-horizon associative learning estimation and linear regression

To assess the duration of the representation of a sequence item in the
brain signals, we used epochs containing 10 tones (2.5 s). We trained a
12-class decoder (for the 12 tones) with balanced accuracy to decode
the identity of the first tone of the epoch throughout the whole epoch.
To ensure that we were decoding the sustained activity related to the
first tone and not a subsequent repetition of the same tone, we removed
from the analysis all epochs in which the first tone was repeated during
the test window (~65% of the epochs were removed; Fig. 3A). We aver-
aged the above chance decoding performance over the time windows
(250ms), which corresponded to the interval between two consecutive
items, to estimate the amount of superposition of the representations
of the different elements of the sequence. We then estimated the long-
horizon associative learning strength of the association for each pair
(A), which corresponds to the sum of the TP matrix between the tones
at all orders (A"), weighted by the overlap between item representations
(Fig. 3B).

We later used the associated novelty index, defined as the negative log
of this association strength, as a regressor for the MEG signal during the
short epochs corresponding to the different transition types (Fig. 3D).
We performed spatiotemporal cluster analysis on the  value associated
with this linear regression to extract electrodes and times where this
long-horizon associative learning estimation might significantly explain
the difference in activity across conditions. We also computed the aver-
age association strength of each type of transition (Fig. 3C).

Results

Our experiment aimed to identify the neural correlates of com-
munity structure encoding and evaluate if this learning stems
from a low-level associative process or corresponds to a late
and explicit discovery (Ren et al., 2022; Stiso et al., 2022). To
assess the encoding of the community structure, we first decoded
Within versus Between transition type. Afterwards, we character-
ized the temporal dynamics of the representation of each tone in
the sequence in order to assess the possibility of overlapping rep-
resentations that might allow long-distance associations. Based
on this measured overlap, we could estimate the long-horizon
associative familiarity for each transition. Finally, to determine
whether this long-horizon associative learning model was indeed
a plausible hypothesis, we ran a linear regression between the
predicted familiarity and our data.

Decoding Within versus Between community transitions
We first tested whether participants’ mental model of the
sequence encoded the community structure despite uniform
transition probabilities. We thus trained and tested decoders
on all tone epochs ending in a Within transition versus all tone
epochs ending in a Between transition on all pairs (Familiar
and New). We obtained a significant cluster (p<0.05) in the
GAT matrix accuracy. Temporal cluster analysis on the
time-by-time decoding accuracy revealed a significant cluster
between 90 and 250 ms (p <0.001), peaking at 160 ms. Finally,
the epoch-based decoding was significantly above chance
(p<0.01; Fig. 1, Within vs Between).

We then restricted this analysis to the Familiar transitions
(Familiar Within vs Familiar Between, which corresponds to
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92% of the epochs). Since Familiar Within and Familiar
Between transitions have the same transition probabilities
(0.23), a significant difference would then be due to a higher-
order representation of the community structure. Here again, a
significant cluster (p<0.01) was found in the GAT matrix. A
temporal cluster between 80 and 280 ms was found in the
time-by-time decoding (p<0.001) with a peak at 150 ms.
Epoch-based decoding was also significantly above chance
(p<0.001).

Symmetrically, we restricted the analysis to New transitions
only (New Within vs New Between, which corresponds to 8%
of the epochs). By design, both New Within and New Between
transitions had transition probabilities of 4% so learning only
local transition probabilities would predict equal unfamiliarity
with both types of transition. In line with the previous results,
we found a significant temporal-temporal cluster in the general-
ization matrix (p < 0.05), and a significant temporal cluster in the
time-by-time decoding (p < 0.05; significant time, [130, 170] ms;
peaking at 160 ms). Epoch-based decoding was also significant
(p <0.05). Due to the much smaller number of epochs, the results
were noisier.

We also computed the ERF on the gradiometers for the
Familiar Within versus Familiar Between and New Within versus
New Between contrasts on the [100-200] ms time window to
confirm the presence of the effect found with the decoding
approach. The outcomes were qualitatively comparable: a signifi-
cant effect ~150 ms for the Familiar Within versus Familiar
Between contrast (cluster-based permutations p <0.001), and a
trend effect for the New Within versus New Between contrast
(cluster-based permutations p =0.075). In both cases, the topog-
raphy of the difference was compatible with an auditory
response.

We performed a series of control analyses to eliminate puta-
tive low-level confounds, such as decoding success based on the
identity of the current tone, the previous tone, or the pair of
tones. To control for tone identity decoding, we ran the decoding
analysis but restricted it to one of the four nodes at the border of a
community (i.e., connected to a node of the other community,
darker nodes in Fig. 2). Depending on the previous tone, these
epochs could be either Familiar Within, Familiar Between,
New Within, or New Between. Thus, decoding within versus
between community transitions on those epochs cannot be
driven by the tone identity. The same was done for epochs where
the transition began with one of these four nodes (i.e., epochs
where the previous node of the sequence was one of the nodes
at the border of communities) to control for decoding the iden-
tity of the previous tone. We also controlled for the pair forming
the transition (previous and current tone identity simulta-
neously): in a similar manner to the current tone control, we
restricted the analysis to nodes at the borders of communities
and also cross-validated the decoding on the previous tone iden-
tity. To do so, we trained and tested our decoder on different pre-
vious nodes (training on three previous nodes per community
and testing on the three others, see batches in Fig. 2). This strat-
egy was also used for the Familiar Within versus Familiar
Between GAT matrix decoder. By experimental design, New
Within versus New Between decoders were already balanced
for current and previous tones (each node is attached to one tran-
sition of each type). Thus, we only controlled for the pair by using
the cross-validation of the previous node with the same batches
described above. Overall, the control analyses qualitatively and
quantitatively confirmed previous results. Only the New
Within versus New Between control for pair (ie., controlling
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Figure 1. Within versus Between community decoders on the MEG signal. Top panel, Decoders with all Within community epochs (Familiar and New) versus all Between communities epochs
(Familiar and New) transitions. A, GAT matrix with significant cluster delineated in black. B, Time-by-time decoding. The shaded area indicates a significant temporal cluster. €, Individual
performances based on whole epoch decoding: Mean decoding accuracy across subjects (green bar, one dot per subject, the black line represents standard error). Those three analyses
have been replicated with Familiar only transitions (middle panel) and New only transitions (bottom panel). Community structure was encoded in each case despite the flat local TP.
Stars represent significance of the statistical tests (*p < 0.05, **p < 0.01, ***p < 0.001).
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Control analyses for the results presented in Figure 2. For each decoder, we controlled for the current tone, the previous tone, and the pair (both current and previous tone

simultaneously). We also controlled for habituation due to temporal proximity between tones. All the analyses qualitatively and quantitatively confirmed previous results except the New
Within versus New Between control analysis that did not reach significance, probably because of the small number of epochs.

both previous and current tone identity simultaneously) analysis
did not reach significance, probably due to the small number of
epochs in this analysis (only 8% of the data was used in this last
control).

Within versus Between community transitions decoding
could also rely on a habituation effect. Indeed, if the sequence
remains within a community, a particular sound might be
repeated multiple times within a short span, causing habituation.
However, if the sequence shifts from one community to another,
the same sound is less likely to be repeated in a short time, thus
preventing habituation. Therefore, this differential habituation
effect could drive the Within versus Between decoder. To rule

out this alternative hypothesis, we restricted the analysis to the
first appearance of each tone after a community change. Thus,
close repetitions of tones of the same community are avoided
in the data used for this decoder. Despite a decrease in the num-
ber of epochs, the decoding accuracy of those controls was still
significant for all conditions. All generalization matrices are
shown in Figure 2.

Long-horizon associative learning estimation

We tested here the hypothesis that long-horizon associative
learning (associative learning over several consecutive and non-
consecutive items) can support the encoding of network



Benjamin et al. ® Neural Encoding of Community Network Structures J. Neurosci., April 3, 2024 - 44(14):21369232024 - 7

Tone: n nt1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
o> |
1 I~ 1
L8 !
| =] |
| (e} |
1 o 1
1 © 1
s :
1 m 1
)

- !
' - Chance T WINPT bt Wy ™ |
;oo |
' 5 :
' !
L8 |
- !
| @ © |
' & S

L e 3 :
. g (] '
DS !
- |
< -100 :

Extract weights for the long horizon
B assocative learning estimation

X X | | ; |
| ' . | A AN
i A:Transition probability matrix | A = IxA +Ix A +IxA3+ ----- X A | o | ' |>g m A !
| | = Qg ' — |
: : 82 ¢ N

) . ) oz
' ! Long horlzop'assoqatlve I.earnlng re 5 £ — Familiar Within !
! 1o transition stength : 1 ! IS g ! E -g e Now Within :
1 1 2 ¢ 2 < 0 —liar Bet |
: : : <C g : E g H amiliar Be ween:
' ! BN ——%2g Lo _NewBetween |
i i o . LU = i
| | Q < |
| 1 o o |
| 1 = R |
| | + [ = |
: : - 28 |
1 1 1 1 < = I
| 1 ! | £ |
: i | L8 :
i J—— | | |
i i | | !
: p1zm Node n i ' !

Regress in

MEG trials

Figure 3.  Associative learning estimation and fit on MEG data. A, Top, Decoding performance of the first item of the sequence across time (2.5 s window). Shaded colors indicate the stimulus
onset asynchrony (SOA) between each tone of the sequence. The dotted line shows the chance level. Bottom, Decoding performance averaged over the duration of each tone and the following
ISI. Error bars present the standard error across subjects. It takes ~8 items for the decoder of the first tone to converge to chance level. B, Matrix of exact transition probabilities (4) associated
with the graph underlying the sequence. Familiar transitions are associated with 23% transition probabilities and New with 4% transition probabilities (Movie 1). Impossible transitions have a
null TP. ¢, Estimation of the long-horizon associative learning strength for each transition. Based on the decoder (panel A), we estimated the overlap between nonadjacent elements of the
sequence (average decoder accuracy during SOA of item n + /). We then computed the associative learning strength (4 matrix) for each pair of elements as the sum of the different transitional
probability orders (A", weighted by the overlap between item representations. D, Average of the long-horizon associative leaming strength per condition. Pruning (Familiar Within > Familiar
Between) and completion (New Within > New Between) effects are consistent with behavioral results (Benjamin et al., 2023a) and with the decoding performance obtained in Fig 1.
E, Regression coefficient for the estimated long-horizon associative novelty (-log(A)) for each MEG sensor. Significant time windows are shown in shaded areas and significant sensors are
indicated on the t-map topographies by the white dots. These were obtained with a spatiotemporal dluster-based permutation analysis. The red line below the sensors value represents
the time course of the average regression value on the sensors of the significant cluster.
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structure. This concept builds on Hebbs’ principle of strengthen-
ing the link between co-occurring events. Nonetheless, instead of
focusing solely on learning adjacent pairs, we proposed a broader
approach that allows connections to be established over longer
distances. In our experiment, this long-horizon associative learn-
ing implies that the mental representation of each tone is sus-
tained for a sufficient duration to allow several tones to overlap
(Endress, 2010) and thus enable associations through more suc-
cessive tones. According to this model, it is predicted that the
representation of each tone should decrease following an expo-
nential profile. To test this hypothesis, we quantified the overlap
between the representations of item » and item # + i. In fact, this
provides a good estimator of the weight of the nonadjacent TP of
order i.

To estimate the overlap between brain representations of
different items of the sequence, we determined how long the rep-
resentation of each item was seen in brain activity. To do so, we
split the data into 10-item-long sequences (i.e., 2.5 s) with no rep-
etition of the first tone in the sequence. We train a 12-class deco-
der on each time point to predict the identity of the first tone.
Decoding performance is shown in Figure 3. We averaged the
above chance decoding performance over the time windows cor-
responding to the interval between two consecutive items. We
observed an exponential-like decrease in performance that
reached 0 after ~8 sequence items (Fig. 3A). It shows that the
overlap enabling associative learning might thus include long-
horizon dependencies of up to eight items.

We estimated the long-horizon associative learning strength
of each pair of tones. To do so, we computed the sum of the
different transitional probability orders weighted by the overlap
between item representations as estimated from the decoding
performances (Fig. 3B). This gave us a 12x 12 symmetrical
matrix of learning familiarity for each pair (Fig. 3C). Finally,
we averaged this measure of Familiarity for each condition
type (Fig. 3C) and obtained a result that is consistent with the
pruning effect (difference between Familiar Within vs Familiar
Between transitions) and the completion effect (difference
between New Within and New Between transitions) as discussed
in Benjamin et al. (2023a).

Long-horizon associative learning accounts for epoch
variability
To test the neural predictions of long-horizon associative learn-
ing, we correlated brain signals with the estimated associative
learning strength of each transition (Fig. 3D). We performed a
linear regression between the brain signal after each tone and
the novelty effect produced by each transition. Unlike most stud-
ies of sequence learning, where the novelty is calculated solely
from local transition probabilities, we computed it here as the
negative log of the long-horizon associative learning strength.
This calculation takes into account several orders of adjacent
and nonadjacent transition probabilities whose weights have
been computed based on the overlap of brain representations
estimated by our tone decoder (Fig. 3A-D). A spatiotemporal
cluster permutation test revealed a significant cluster (Fig. 3E)
in the magnetometers (right centro-occipital; time, [150;
290] ms; p value <0.01) that was replicated in the gradiometers
(right centro-occipital; time, [140; 300] ms; p value <0.05).
Furthermore, the observed clusters were still significant when
the negative log of the adjacent transition probabilities was intro-
duced as a supplementary regressor (ps<0.05 for both magne-
tometers and gradiometers clusters). However, while the strong
correlation between the TP matrix and the long-horizon
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associative model makes it hard to directly disentangle those
two models solely based on this regression analysis, it does com-
plement the decoding analyses nicely.

Discussion

In this study, our aim was to determine whether local statistical
learning and structure learning in sequences are governed by
the same cognitive process or by distinct processes. Learning
local statistics is often described as an associative process, while
network learning is usually seen as an abstract map representa-
tion. Previous studies exploring network learning have used
explicit paradigms, revealing late brain signatures consistent
with top-down or frontal activity (Ren et al., 2022; Stiso et al.,
2022). However, based on a modeling approach, we proposed
in our previous behavioral study that low-level associative learn-
ing strategies might support both local and high-order statistical
scales (Benjamin et al., 2023a). Thus, this hypothesis predicts that
learning sequence structure does not require an explicit represen-
tation and may instead rely on automatic and rapid (~150 ms)
mismatch responses, similar to those observed after the violation
of local transition probabilities.

Network learning results from a low-level bottom-up
computation

To test these predictions, we presented participants with a pas-
sive learning task using rapid auditory sequences. We showed
that the structure properties of the sequence were rapidly decod-
able from the participants’ brain recordings (~[100-250] ms
after tone onset). The timing of this response, as early as
150 ms after the information became available, aligns with the
rapid deviant responses (MMN in EEG) observed in learning
based on violation of transitional probabilities (Todorovic and
de Lange, 2012; Maheu et al., 2019). Since the transition proba-
bilities between tones were uniform and the walk within the net-
work was random, prediction could not be based on high-level
top-down expectation. This early and automatic response
(150 ms after the transition) challenges the notion of abstract
and explicit calculations as prerequisites for learning such struc-
tures. In addition, our analyses revealed a similar effect when the
decoding analysis was restricted to new transitions (New Within
vs New Between) and to familiar transitions (Familiar Within vs
Familiar Between), suggesting an automatic generalization of the
community structure beyond sensory evidence. This result pro-
vides a neural underpinning for the behavioral observations we
previously reported, indicating that participants accurately assess
the familiarity of transitions based on their congruence with net-
work structure, even when these transitions were not encoun-
tered during training.

Long-horizon associative learning as a plausible
implementation for FEMM

In our previous study, we hypothesized that the FEMM could
effectively explain adult behavioral performance. This model
aggregates the different orders of statistical regularities (adjacent
and nonadjacent) into a single quantity. In this study, we showed
that this model can be readily implemented through a simple
associative learning mechanism relying on Hebb’s principle
(Hebb, 1949; Benjamin et al., 2023a). In the context of structure
learning, this principle would imply a sustained mental represen-
tation of each tone for a sufficient duration to enable the overlap-
ping of several elements despite the temporal distance. We
thus predicted the representation of each tone to exhibit an
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exponential decay profile. A rapid decay of tone information
would limit associations to short distances, while a slower decay
would facilitate the formation of long-horizon dependencies and,
therefore, the extraction of the underlying structure. Thus, this
exponential decay acts as a balance between local relevance and
generalization.

To test this idea, we estimated the duration of the representa-
tion of each tone, performing a decoding analysis of tone identity.
The identity of a tone was decodable during the presentation of
the subsequent eight tones, with a decoding performance expo-
nentially decaying over subsequent tones. This profile provided
an estimation of the number of elements simultaneously repre-
sented at a given time. Consequently, it allowed us to quantita-
tively assess the strength of each tone pair in the heard
sequence (Fig. 3C). We found that these weights accurately
accounted for the results of the Within versus Between decoders,
encompassing both Familiar and New transitions (Fig. 3D).
Moreover, this estimated strength significantly correlated with
neural activity, aligning with the timing of the automatic deviant
response (Todorovic and de Lange, 2012; Maheu et al., 2019).
This result provides compelling evidence for the rapid encoding
of structure through bottom-up processes compatible with asso-
ciative learning strategies.

However, it is worth noting that an alternative implementa-
tion of the same metric is theoretically possible. Simple pairwise
association learning, in combination with a transitivity property,
would also predict similar learning. In fact, if participants solely
learn pairs (e.g., A-C and C-D), transitivity of this learning can
strengthen the A-D pair, even if not explicitly presented.
Considering this transitivity with similar exponentially decreas-
ing weights would be mathematically equivalent to our model
while not strictly requiring a sequential presentation of the struc-
ture. Although, we cannot definitively rule out this alternative
implementation of the same metric, our findings suggest that
sequential presentation is crucial to have an overlap between suc-
cessive items representations, enabling Hebbian associative
learning. It is also important to acknowledge that associative
learning might not be the sole mechanism contributing to net-
work structure learning, particularly in cases where explicit
detection is required from participants. Abstract representations
of hippocampal maps (Constantinescu et al., 2016) or frontal
maps (Stiso et al.,, 2022) might also play a role in such tasks
(Schapiro et al., 2016, 2017; Garvert et al., 2017). Intracranial
recordings conducted during local statistical learning paradigms
have revealed that multiple brain regions, including cortical areas
and hippocampus, can simultaneously represent the same struc-
ture while carrying different information (Henin et al., 2021).

Difference between implicit passive listening and explicit
structure learning

Thus, converging results provide evidence that associative learn-
ing supports the perception of the community structure in the
present experiment. Long-horizon associative learning strength
significantly accounted for the variance in brain signals
(Fig. 3E). Moreover, the pruning and completion effects found
with decoders (Fig. 1) can easily be explained by the same mech-
anism (Fig. 3D). However, it is worth noting that the results from
our previous behavioral study do not entirely align with the cur-
rent ones. Specifically, in the present experiment, the representa-
tion of tones exhibited a more rapid decrease (exponential
decrease factor 0.52) as compared with its estimation in our pre-
vious behavioral study (factor 0.058, ~10 times lower). This
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discrepancy suggests that participants in the current experiment
might be less inclined to generalize the underlying structure.

Several factors might explain this difference. Firstly, the gen-
eralization factor estimation in the MEG experiment may be
noisier due to the small number of participants (23 vs several
hundred in the behavioral study). Since the trade-oft between
generalization and accuracy may vary among individuals (Lynn
et al., 2020), on the one side, group level estimation with 23 sub-
jects is limited, and on the other side at the individual level, it is
difficult to measure this trade-off due to the data variability. A
larger sample size with multiple sessions per subject would be
necessary to obtain a reliable estimation of the generalization fac-
tor at the individual level. Secondly, it is possible that associative
learning represents the implicit component of this task
(Andringa and Rebuschat, 2015), followed subsequently by an
explicit decision-making process involving higher level prefron-
tal regions. This second step might facilitate the abstraction of the
structure by labeling each community as distinct (Koechlin et al.,
2003; Koechlin and Jubault, 2006). This dual process could
explain why explicit behavioral tasks (Lynn et al, 2020;
Benjamin et al., 2023a) exhibit a better generalization factor com-
pared with our implicit MEG task. The same explanation may
account for the late signatures of top-down activity reported by
Ren et al. (2022) who used a slow and explicit task. To further
explore this hypothesis, a direct comparison of passive and active
learning of such networks while monitoring the representations
in the auditory cortex, the hippocampus, and the lateral prefron-
tal cortex would be necessary.

Conclusion

The aim of the present study was to uncover the neural mecha-
nism underlying network learning. We proposed the sparse com-
munity paradigm as a way of combining local statistical learning
and network learning in a single sequence. Previous behavioral
studies have shown that a mathematical model (FEMM) accu-
rately captures human learning. Here, we add that the behavioral
pattern described by the FEMM is compatible with certain asso-
ciative learning principles. Indeed, thanks to time-by-time
decoding of the brain state associated with a tone, we observed
an exponential decay in the tone representation across eight ele-
ments. Using this estimate of mental representations’ dynamics,
we estimated the strength of each network transition. This esti-
mate significantly correlated with our data. The present study
provides novel insights into the mechanism underlying network
learning and highlights the importance of brain dynamics in the
understanding of sequence learning. Further investigations in
different experimental conditions (explicit vs implicit), over
different tone and ISI durations, with different populations (non-
human primates), and during early development are necessary to
better characterize this learning ability.
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